Sprungmarken

Servicenavigation

TU Dortmund

Hauptnavigation


Bereichsnavigation

Mathematisches Kolloquium

Datum Gastredner Thema Ort
Im Rahmen des Mathematischen Kolloquiums
Im Rahmen der Vortragsreihe Angewandte Numerik und Simulation
26.04.2018
14.15 Uhr
Dr. Nicole Beisiegel
University College Dublin
Numerical Simulations of Storm Waves

Zusammenfassung


The Irish West coast is vulnerable to severe flooding events (O’Brien et al. (2013)), most of them caused by violent storms that form over the Atlantic Ocean. It has been shown in (Cox et al. (2012)) that these storm events can create and move large boulder deposits on top of steep cliff tops. These deposits can be regarded as a proxy for storm intensity and, eventually, help our understanding of storm impact.
The lack of measurement data of these rare events, emphasizes the need for computer simulations. In this talk, I will present numerical simulations of the non-linear evolution of ocean waves using CFD-type (discontinuous Galerkin) and high-order spectral models.
For that purpose, we developed (1) a discontinuous Galerkin non-linear shallow water model (Beisiegel and Behrens (2015), Vater et al. (2015, 2018)) that uses advanced slope-limiting techniques for enhanced accuracy and stability and (2) a MPI-parallel 3D pseudo-spectral model following the idea presented in (West et al. (1987); Dommermuth and Yue (1987)) to simulate extreme storm waves. The model heavily relies on fast Fourier transforms (Cooley and Tukey (1965); Frigo and Johnson (2005)) and solves the free surface up to an arbitrary order of non-linearity.
I will highlight their particular advantages and drawbacks with respect to onshore propagation and inundation, and will discuss their practicality for use on today’s high performance computers.
[Abstract]
Mathematikgebäude, M1011